

RTS2
overview and real-life

processing of the
images
Petr Kubánek

IAA CSIC Granada, GACE Valencia

Credits

M. Jelínek, A. Castro-Tirado (IAA-CSIC) R.Cunniffe (Cork)
J.French, G.Mellady, B.McBreen, L.Hanlon (UCD, Dublin)

 M.Nekola, F.Munz, J.Štrobl, R.Hudec, M. Kúcka (AsU AV ČR, Ondřejov)
A.de Ugarte (ESO, ex. IAA), S. Vítek (FEL ČVUT, ex. IAA)

 M.Prouza (FU AV ČR), J. Frank, I. Kotov, P. O'Connel (BNL, LSST)
M. Wildi (Basel), L. Gilwood (Libnova), V. Reglero, B. Sanchéz (GACE)

... and others (which were forgoten) ...

RTS2 - history

 Remote Telescope System, 2nd Version
 There was of course RTS (1)

 .. RIP (1999-2002)
 Python, without database, ..
 Worked (57 seconds for some GRB)

 C++ (originally pure C)
 Put to public SourceForge Subversion this year
 ~ 80k lines of code (and growing)
 Open source from beginning

RTS2 - goals

 apt-get install rts2
 Configure it (in graphical wizard)
 Test it
 Connect it to network
 Run it
 Do science
 Call rts2-make-paper {journal} few times a

year, have a cup of your preferred drink and
enjoy live

RTS2 - primary goals

 GRBs (Gamma Ray Bursts)
 For that we need fully autonomous system

 Few visible during year on a single site
 Need really fast (seconds) reaction to triggers to do

interesting science

 On first look solved
 .. but more detailed look show it is not true

 Missing transient detection
 Calibrations
 ...

RTS2 - secondary goals

 Effective system for control of a fully
autonomous observatory

 Full scale solution for observatory automation,
including:
 Calibrations
 Scheduling
 Full image and data processing

 Light curves
 Transients

RTS2 - so far

 BART (1999-)
 SuperBART (2007-)
 FRAM (2006-)
 Watcher (2006-)

 BOOTES (200?2-)
 1A, 1B, IR, 2,

 BOOTES all sky
(2007-)

 LSST testing lab
(2007-)

 Markus observatory
(Switzerland) (2007-)

RTS2 - future

 University of
Columbia lunar
brightness telescope

 1.23 CAHA
 65cm @ Ondrejov

(close to BARTs)

 New Zealand (2009?)
 Reunion Island

(under negotiations)
 India (this fall?)
 Russia (next year?)
 others?

RTS2 structure

 Common library parts
 Astrocalc done by libnova (.sf.net)

 Central daemon
 Devices daemons

 CCDs, mounts, domes,..

 Services
 executor, selector, imgproc, grbd, auger, ..

 All connected by TCP/IP
 ASCII (text) protocol

RTS2 scripting

 Describes how RTS2 observe targets
 Own scripting language, described in man

rts2.script
 Simple commands for exposures, filter

changes,..
 F 0 E 10 F 1 E 20

 Loops
 F 1 for 10 { E 10 filterpos+=1 }

 And more...

RTS2 scripts

 Designed to be easy to code
 System tries to solve synchronization

 Do not expose while filter wheel is moving,..

 The question is if that is what we wanted
 Does users wants easy scripting, which will require

complex RTS2 processing, and which will
sometimes not work (and will be very hard to fix)?

 Or they are looking for scripts which will allow them
to control observing sequence, at costs that they
must handle synchronization?

More complex scripts?

 Instead of
 F 0 E 10

 You will need to write
 F 0 wait_idle E 10

 Instead of
 F 0 for 10 { E 10 filter+=1 }

 You will need to write
 F0 wait_idle for 10 { E 10 not_exposing filter+= 1 }

XML-RPC approach

 Presented by Subaru team at SPIE 2008

req = XMLRPC.request (filter=10)

req2 = XMLRPC.request (dither=10)

req.wait ()

req2.wait ()
 So they build XML-RPC script with

synchronization points (wait for commands
completion)

 To go this way, that is the question..

Image acquisition with RTS2

 Following apply to images acquired in
autonomous mode

 Image processing from command line is
possible, but not supported by RTS2 (if you will
know what to do, you will be able to handle it..)

 Images are what we get for science, yet image
processing on them is not an easy think

image acquisition and processing

 Done in executor or image processor (imgp)
 Phases

 FITS creation
 FITS population
 Image processing
 Observation processing

FITS creation

 Empty FITS file is created
 Path is created using substitutions

 See man rts2.ini for details which strings are
allowed

 Only % strings works in FITS file creation
 you cannot use $<fits key>$ at this point

 FITS file is created when camera start
exposure
 Change of state from IDLE to EXPOSING triggers

image creation

FITS population

 Keywords and values from different
components present in the system must find
their way to FITS file

 Rts2Values are optimized for writing to FITS file
 Description (FITS comment)
 Flag write (and when to write)

 Exposition start, end,..
 Important keywords less then 8 characters

Image processing

 So far done:
 Some dark & flat processing (Martin)
 Astrometry using

 RTOpera2 (whatever called)
 astrometry.net

 → feedback to telescope (corrections)
 After that, light curve extraction is beyond my

current knowledge
 Everything called from /etc/rts2/img_process script

Observation processing

 Idea is call observation processing script after
all images are acquired
 and were processed by individual image processing

script

 Currently script gets only observation ID
 But I agree it should be given access to list of

images, ..
 The problem is that with current model it is not an

easy thing to do
 → I need to change that

Current path model

 Subject to change! (it is now in rts2.ini)
 Queue, archive, trash
 I know I cannot live with it any more..

 .. and need your input how to change it

 This is overview how it works now
 To start discussion how it can work better

Current path model - example

 Image base is /images
 Epoch is 1 (or 001)
 Image comes from camera C0
 Image is for target 01234
 Exposure started on 26th June 2008 at

20:45:45.123 UT

Image live cycle

 Image is created in que_path
 /images/001/que/C0/20080626204545-123-RA.fits

 Image is processed by image processor, is
good (have on-line astrometry)
 /images/001/archive/01234/C0/object/

20080626204545-123-RA.fits

 Image does not have astrometry
 /images/001/trash/01234/C0/

20080626204545-123-RA.fits

RTS2 (image) database

 PostgreSQL
 Include image coordinates

 → possible to search for images which contains
object of interest

 Virtual Observatory extension

 Should we aim at creation of a generic tool
 Which will include possibility to store any FITS

keyword from headers

 And what about user access?
 Web, GUI, command line, XML-RPC, VO,...?

Disadvantages of current model

 Images are not grouped by observations
 Currently it is not clear from image location if

image is raw, has dark frame or flat field
subtracted, ..

 It is very hard to construct image path from
database entry
 It is possible, but it can be easier if location of

images will not change between trash and good
(archive) images

Ideal path model

 Two users
 Computer science / operative

 Needs separated images by observations
 Needs access to data by nights, months,.., so he/she can

quickly move part of data to different data storage
 Astronomer / scientists

 Needs access to all (calibrated) images of given target
 Sorted by filter,..

Ideal path model

 Use computer science model for data storage
 Something like

/images/<year>/<month>/<night>/<obsid>
/camera_hhmmss.sss.fits

 And provide tools to transfer that to astronomer
wish model
 rts2-image with strings for substitutions to move

files
 Recipes for image calibrations and processing
 Recipes for data extraction

Recipes for image processing

 Give me all images from given object
 Calibrated, raw
 With object no closer then n arcmin to image edge

 Build structure with directories for filters,..
 Extract light curve for given object

 Aperture or PSF photometry
 with calibration stars taken from the field
 or with instrument calibration from calibration runs

Problem with ideal path model..

 I need user input
 That is one of the reasons why I called this meeting

 I am sure that this is not a work for single
developer / astronomer
 That is why we need to learn how to collaborate

and share our work

RTS2 - problems

 Complexity (→ not for a single developer)
 Documentation (→ for a single developer)
 Time lost on solving operational issues

 New telescopes, cameras, problems in night runs
 Currently about 70-90% of my time, fluctuates, but

usually do not drop bellow 30%

 Range of issues
 Hardware, database, XML-RPC
 Synchronization
 Image processing

Fears?

 RTS2 have ~80k lines of code
 Developed for 8 years → 10k lines / year
 It is still not what I want
 Rule of thumb:

 Good coder can design, write, debug and document
100 lines / day

 I can do that (100 work days / year on average)
 .. but I know that is not enough ..

 Thinking telescope has ~ 200k lines
 Expect to reach more then 400k lines

RTS2 - development ideas I

 Rts2Image library extension – afternoon
discussion

 XML-RPC used as interface between hardware
and executor
 So executor / observatory control can be written in

Python,..
 Executor then can use Python / any other language

scripts for observation control
 Scripts will become observations blocks, if you like that

term

RTS2 - development ideas II

 GUI (Graphical User Interface)
 PyGTK, XML-RPC – please come to see example

during coffee break

 Web interface
 Again with XML-RPC, Web 2.0, Google Web Toolkit

 Scheduling
 Genetics algorithms, please ask for details
 My project for finishing first part of the PhD.

RTS2 - development ideas III

 Faster image transfer
 When possible, use shared memory

 Binary protocol
 Faster then ASCII, UDP possible

 Networking component
 My PhD. thesis topic
 To control, monitor and use everything
 Network scheduling
 Strong monitoring and problem solving support

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 31
	Snímek 32
	Snímek 33

