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◮ EMCCD allows higher temporal resolution than CCD.
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◮ Readout noise is negligible in EMCCD.
◮ Dynamic range depends on gain. The dynamic range is better

for slow scan. Lower dynamic range than CCD.
◮ A noise factor (

√
2) is introduced by the additional

multiplication channel. This factor does not affect readout
noise, but photon, dark and CIC noises.
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◮ EMCCD allows higher temporal resolution than CCD.

◮ Readout noise is negligible in EMCCD.
◮ Dynamic range depends on gain. The dynamic range is better

for slow scan. Lower dynamic range than CCD.
◮ A noise factor (

√
2) is introduced by the additional

multiplication channel. This factor does not affect readout
noise, but photon, dark and CIC noises.

◮ Not cooled below −95oC , the limiting noise source is readout
darkcurrent, which is not important in conventional CCDs.
Cooled below −95oC , the limiting noise source is CIC.
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EMCCD vs CCD

◮ EMCCD allows higher temporal resolution than CCD.

◮ Readout noise is negligible in EMCCD.
◮ Dynamic range depends on gain. The dynamic range is better

for slow scan. Lower dynamic range than CCD.
◮ A noise factor (

√
2) is introduced by the additional

multiplication channel. This factor does not affect readout
noise, but photon, dark and CIC noises.

◮ Not cooled below −95oC , the limiting noise source is readout
darkcurrent, which is not important in conventional CCDs.
Cooled below −95oC , the limiting noise source is CIC.

◮ When photon noise limited, SNR in EMCCDs is half that in
CCDs, because of the noise factor.
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◮ Temporal resolution improves by a factor 1/G , if readout time
negligible with respect to the integration time.
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◮ Temporal resolution improves by a factor 1/G , if readout time
negligible with respect to the integration time.

◮ The advantage disappears when limiting uncertainty is not due
to sensitivity of the detector (readout, dark, charge transfer or
spurious charge noises), but to the light level of the source.
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◮ Temporal resolution improves by a factor 1/G , if readout time
negligible with respect to the integration time.

◮ The advantage disappears when limiting uncertainty is not due
to sensitivity of the detector (readout, dark, charge transfer or
spurious charge noises), but to the light level of the source.

◮ When source is bright and shot noise higher than the detector
noise; EM unable to overcome the noise and puts an
additional noise in the measurement.
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◮ Temporal resolution improves by a factor 1/G , if readout time
negligible with respect to the integration time.

◮ The advantage disappears when limiting uncertainty is not due
to sensitivity of the detector (readout, dark, charge transfer or
spurious charge noises), but to the light level of the source.

◮ When source is bright and shot noise higher than the detector
noise; EM unable to overcome the noise and puts an
additional noise in the measurement.

◮ When the source is faint and shot noise of the background
makes the source undetectable; EM useless, because the
multiplication does not distinguish between source and
background photo-electrons.
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Figure: Different illumination levels in a source. Some pixels are favoured
by EM, whereas the SNR of other pixels may decrease due to the EM.
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◮ In any case, the SNR of the brighter sources will be always
higher than the SNR of the fainter sources.
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◮ In any case, the SNR of the brighter sources will be always
higher than the SNR of the fainter sources.

◮ Therefore, if a chosen gain allows to detect a faint star, it
should be never a problem the detection of brighter sources,
although the relative uncertainty will increase a factor

√
2 for

these sources.
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◮ SNR is proportional to
√

Gtint .
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◮ SNR is proportional to
√

Gtint .

◮ The lower limit of tint depends on the photon flux, but above
all on the CCD, because the accuracy decreases below 0.1 sec
of integration time. In addition, below tint << treadout

temporal resolution can not be improved.

Alejandro Ferrero School of Physics University College Dublin alejandro.ferrero@ucd.ieEMCCD Photometry



Outline
Introduction

Characterization

EMCCD vs CCD
EMCCD in Photometry

EMCCD in Photometry

◮ SNR is proportional to
√

Gtint .

◮ The lower limit of tint depends on the photon flux, but above
all on the CCD, because the accuracy decreases below 0.1 sec
of integration time. In addition, below tint << treadout

temporal resolution can not be improved.

◮ The upper limit of G is imposed by the aging. The higher G ,
the more the aging. Very high gains decrease the dynamic
range of the detector. Since the sources are distributed in a
wide range of irradiance levels on the EMCCD, the largest
dynamic range gain should be chosen.

Alejandro Ferrero School of Physics University College Dublin alejandro.ferrero@ucd.ieEMCCD Photometry



Outline
Introduction

Characterization

EMCCD vs CCD
EMCCD in Photometry

EMCCD noise

σ2(npe) = σ2

r (npe) + npe + nd (1)

σ2(nae) = σ2

r (nae) + 2G (nae + nad) (2)

σ2(N) = σ2

r (N) + 2GKN (3)

GK =
σ2(N) − σ2

r (N)

2N
(4)
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Theoretical effect of EM on a source

Figure: Theoretical effect of EM on a source in the border of the
detection (SNR∼3).
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Figure: EMCCD (G=3.8) SNR vs conventional mode CCD SNR.
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Experimental setup

Figure: Radiant source for radiometrical calibration.
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Andor IXON DU-897 EMCCD: Parameters choice

◮ Integration time > 0.05sec .

◮ Vertical Pixel Shift: Shift Speed 2.2 µs, Vertical Clock
Voltage Normal

◮ Horizontal Pixel Shift: Readout rate 1MHz@16bits,
Preamplifier Gain × 1.

◮ Temperarature −80oC .
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Stabilization
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Figure: The response of the EMCCD is clearly temperature dependent
and it is stabilized at 0.16% after around 5 minutes.
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Reproducibility
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Figure: At G=300 and at conventional mode the stability was 0.1% and
0.2%, respectively.
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Photon Transfer Technique
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Figure: Photon transfer technique result.
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Figure: GK product and readout noise as a function of the software
displayed gain.
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Actual Gain
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Figure: Actual gain as a function of the software displayed gain,
assuming that they are identical at G=3.
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Saturation
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Figure: Saturation of EMCCD at several gains.
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Figure: EMCCD linearity.
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Spectral responsivity and external quantum efficiency
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Figure: Spectral responsivity and external quantum efficiency.
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